
August 2001 The Delphi Magazine 57

Titanium 2.0
New security software from BitArts
Reviewed by Dave Jewell

If you’re in the business of creat-
ing commercial software, then

copy protection is likely to be an
issue for you. Whether it’s a big or a
small issue depends on many
factors, such as the price of your
product, whether it has mass-
market appeal, whether it’s a spe-
cialised, vertical market, item, etc.
As you will doubtless appreciate,
there are numerous approaches to
the problem of software piracy. A
common technique is to disable
certain features of a program,
restricting complete functionality
to those who have paid for it.
Another approach is to only work
for a certain number of invoca-
tions, or for so many days after
installation, and so on.

Software protection seems to be
becoming an increasingly hot
potato: as I write this article,
Microsoft has just signed off
Windows XP Release Candidate 1,
the first Microsoft platform that
will incorporate product activa-
tion. This means that XP insists on
‘calling home’ within 14 days of
product installation, passing regis-
tration key details back to base,
and making it problematic for
someone else to reinstall the soft-
ware with that same registration
key. Office XP also uses product
activation, and even the latest
incarnations of dear old Delphi and
JBuilder 5 now include mandatory
product registration. It’s debatable
whether these moves are a
response to a sudden, huge growth
in software piracy, or just a cynical
attempt to maximise revenue at
the expense of user convenience.

You won’t be surprised to hear
that, to the best of my knowledge,
all four of the above-named prod-
ucts were duly ‘cracked’ within
hours of their release, but that
rather misses the point. There are
cost/ benefit tradeoffs here: the
traditional argument goes that 90%
of casual hackers can be defeated

using a very simple technique,
such as compressing your execut-
able to make decompilation diffi-
cult. A much greater effort is
needed to deter another 9%, while
that final 1% of dedicated anoraks
will hack their way through any-
thing you devise and can’t, practi-
cally speaking, be stopped from
doing their worst.

At least, that’s the traditional
argument. However, new software-
only products such as BitArts
Titanium 2 are emerging which
look set to provide virtually
unbreakable levels of copy protec-
tion, without requiring the use of
hardware ‘dongles’ and the like.
Using the mutation engine con-
tained therein, it becomes impossi-
ble to create the sort of generic
crack so beloved of hackers. But
I’m getting ahead of myself. Let’s
take a closer look at Titanium 2 and
what it claims to deliver.

Titanium 2:
Secure Data Delivery
Secure delivery is what it’s all
about. At its heart, Titanium acts
as a wrapper around your program
executable. If you’re not familiar
with the concept of a ‘wrapper’,
suffice to say that Titanium takes
your original executable code,
encrypts it, compresses it and
hides it inside a new EXE file, which
then becomes your program from
the viewpoint of a naïve end-user.
This is a fundamentally similar
technique to that used by
EXEPACK, Shrinker and other com-
pression tools. However, whereas
the emphasis of these tools is on
compression, the emphasis of
Titanium is on security. Most
importantly, only authorised users
are able to run the ‘wrapped’
executable.

Many shareware and commer-
cial products use some sort of
hashing algorithm which takes a
username and (optionally) an

organisation name, spitting out a
special registration key. Only by
entering the correct key into a
registration dialog is the product
unlocked. This is how the
ever-popular WINZIP works: just
plug in ‘Dave Jewell’ as the
username, and the internal algo-
rithm calculates the correct regis-
tration code, refusing to register
your program until that code is
entered. And therein lies the Achil-
les heel of this approach: because
the hashing algorithm is held
locally, it can, albeit with some
effort, be found, duplicated and
used to produce a ‘Keygen’. If
you’re at all familiar with the
‘warez’ scene, you’ll know that a
Keygen is a small, special-purpose
program whose only aim in life is
to generate registration keys for a
specific program.

Titanium cunningly gets around
this weakness by removing the
generation of unlock codes from
the local executable. If our pro-
spective hacker doesn’t have
access to the algorithm used, then
he/she can’t duplicate it. This can
be done in one of two ways: either
manually using a License Manager
or automatically using a built-in
e-commerce facility. Let’s look at
the manual situation first.

BitArts supply a License Man-
ager application which can be
used to create an unlock code,
entering certain information such
as a special serial number supplied
by the user (he/she sees it in the
license dialog when attempting to
register the product). This serial
number is generated according to
certain hardware parameters of
the machine so that, if the user
attempts to use the same unlock
code on a different machine, the
unlock attempt will fail. Although
the serial number presented to the
user is machine-specific, it also
exhibits some ‘history behaviour’.
This is important for the following
reason: suppose a user asks for an
unlock code to extend the usage of
some product for 30 days. After
this 30-day period, our devious
user might attempt to use the same
unlock code to give himself
another 30 days of time. What he
doesn’t realise is that the first time



58 The Delphi Magazine Issue 72

he used the unlock code, it
resulted in a change to the serial
number, rendering the unlock
code useless for subsequent
unlocks.

Although the manual approach
is great as far as it goes, it does
mean that both you and the user
have to mess around with serial
numbers and unlock codes. How-
ever, wouldn’t it be great if the
whole thing could be automated?
For this, BitArts has come up with a
new, internet-based authentica-
tion scheme which it refers to as
Charge Key technology. Using
Charge Key, you can embed
e-commerce software into the
finished executable, allowing the
user to register your software
online using a credit/debit card.
This is done via a secure connec-
tion to a Charge Key server which,
in turn, communicates with the
issuing bank in real time to author-
ise the transaction. If you go down

this route, BitArts allocates you a
unique merchant ID which is refer-
enced from within the licensing
code. Once a transaction has been
authorised, a sales confirmation is
automatically emailed to both you
and the purchaser, and the soft-
ware is automatically unlocked.

This approach adds around
200Kb to the size of the wrapped
executable, primarily because of
the complexity of the client SSL
code which is required for a secure
connection to the Charge Key
server. You should also be warned
that BitArts will charge you 6% of
the purchase price of your product
for every transaction. However, I
think this is a reasonable deal,

especially when you bear in mind
the ‘instant gratification’ factor
here. Speaking as an e-commerce
‘junkie’ (at least, where program-
mer’s tools and utilities are con-
cerned) I can testify that you’re far
more likely to get a sale if it’s just a
matter of the potential customer
pressing a few buttons to auto-
register the software online.
Waiting for a registration key to be
sent via email, or (horrors!) having
to pick up the phone and actually
talk to someone is just too much
hassle.

What I’ve described thus far is
the Charge Key Host system, so
called because BitArts is effec-
tively giving you (or rather, your
customers) access to its Charge
Key servers. If you go for this sort
of deal, you also receive security
certificates which enable you to
add, delete and edit product speci-
fications on the BitArts servers.
This is done remotely via a
web-based management console.
You might need this facility if, for
example, you change the price of
one of your offerings.

In addition to Charge Key Host,
there’s also the Charge Key Solo
system. In this scenario, the
Charge Key server software is

➤ Figure 1: Titanium uses an
innovative 'Process Flow'
system which enables you to
visually lay out the desired
licensing scheme for your
application. Various other
desktop elements are included
in the package. And yes, it
does run under Windows XP!

➤ Figure 2: As you can see, there
are build options for adding
the Mutation Engine and Flash
support to the wrapped
executable. Note that when
embedding Flash movies, no
other runtime support is
required: the rendering
engine is built in.



August 2001 The Delphi Magazine 59

installed directly onto one of your
own machines running Windows
2000 Server with Microsoft SQL
Server. This obviously gives you
maximum control over security,
and BitArts points out that this
approach is ideal for ISVs who are
working with resellers, because
you’ve got the option of setting up
multiple merchant IDs on the
system, one for each reseller.

Go With The Flow!
One of the most innovative and
interesting features of Titanium 2
is the Process Flow system which
has been designed into the prod-
uct. On the one hand, the company
wanted to provide a high level of
flexibility, allowing software devel-
opers to create their own custom
licensing scenarios. But, on the
other hand, it didn’t want to
develop a full-blown SDK, with all
the language-specific hassles and
support issues which that entails.
What it came up with was the
Process Flow system which visu-
ally walks you through the licens-
ing process, enabling you to make

the thing as simple or as complex
as you want.

Let’s walk through a simple
example to show you how this
works. To begin with, you need to
launch Titanium itself and click New
from the File menu in order to
start a new Titanium project. Pro-
ject files, incidentally, are saved
with the extension .tdf. Once
you’ve done this, you’ll see a
window very much like the one
shown in Figure 1. The Process
Flow elements can be dragged
around the work area, while the
connecting arrows follow each
element around. There are
assorted options for controlling
the appearance of the Process
Flow area: you can change fonts,
text colour, line colour, arrow
style, and even the background
bitmap. Not hugely relevant to the
job in hand, but fun to play with,
nevertheless.

In Figure 1, the leftmost item is
the splash screen element. This
corresponds to the splash screen
that the user will see each time
he/she runs the application. This

isn’t mandatory: if you want, you
can remove the splash screen alto-
gether, but I’d strongly recom-
mend that you keep it for the
simple reason that the Titanium
wrapper takes a few seconds to
load and verify the program, so
you should give the user some-
thing to look at during this time.
Right-clicking the splash screen
element allows you to configure
the screen position of the splash,
how long it’s displayed, and so
forth. At this point, I should men-
tion that all the various dialogs dis-
played by the Titanium wrapper
(including the splash screen) are
supplied with the product as a
number of dialog templates. You
can customise these templates for
your own use, and of course you
can therefore change the splash
bitmap. One of the most exciting
new features in Titanium 2.0 is the
ability to embed Macromedia
Flash graphics into your wrapped
executable. Using the integrated
dialog editor, you can add Flash
movies to any dialog of your
choice. Variables in the Flash



60 The Delphi Magazine Issue 72

movie can be mapped onto built-in
and custom Titanium variables
making it possible to seamlessly
integrate the movie into the
end-user’s experience.

Moving from left to right in
Figure 1, next up is the Select File
item. This enables you to select the
executable that’s going to be
wrapped. At this point in time, Tita-
nium will only protect EXE files: it
won’t work with DLLs. However, if
you really need to protect a DLL,
BitArts does have other products
that will do the job. Next we come
to the not-very-well-named Desktop
item. This is primarily concerned
with the type of protection that
you want to apply to your applica-
tion. You can choose either a fixed
or dynamically generated serial
number (about which more later)
and you can choose from one of the
following three protection types:
➢ Credits: the evaluation software

only runs a certain number of
times.

➢ Days: the evaluation software
will only run for a certain
number of days.

➢ Date: the evaluation software
will stop running after a certain
date.

And yes, to answer the obvious
question, the security wrapper
inside Titanium is smart enough to
detect attempts to backdate the
system clock in a user’s PC, a
common ruse to gain more usage.

Typically, you will want to hide
the License Details dialog once the
user has purchased the software,
and there’s an option to do this
from within the Desktop item. You
can also choose to redisplay
license details once the evaluation
license has expired. Most impor-
tantly, if you’re using the Charge
Key system, this dialog provides an
entry for you to type in your
Merchant ID and Product ID infor-
mation, (assigned by BitArts) iden-
tifying you to the Charge Key
server.

As with classical flowchart dia-
grams, the next, diamond-shaped,
box is a Desktop conditional item.
This always follows the Desktop
item since it’s designed to act on
the ‘output’ of this item. Using the
conditional item, you can test if the

protection ‘state’ is Expired, Regis-
tered, Evaluation, or Error. The
meanings of all these should be
obvious with the exception of
Error, which indicates that the pro-
gram has been tampered with, the
PC clock has been backdated, etc.
In this case, I set the conditional
item to return True if the protection
state is Evaluation or Registered
and False otherwise. As you can
see from the diagram, this causes
the wrapper to either run the pro-
gram or terminate respectively.

Much more complex configura-
tions can be created by adding
more elements to the Process Flow
‘desktop’, and there are more avail-
able elements than those shown
here. For example, you could inter-
pose a Virus Protection element
immediately before the wrapped
application is to start executing.
This performs a rigorous CRC
check on the in-memory program
image, allowing you to detect and
abort unauthorised tampering.
The beauty of the Process Flow
approach is that such checks can
be placed anywhere in your
process flow diagram. Another

element, Generic Conditional,
allows you to set a True or False
condition depending on the state
of some internal wrapper variable.
For example, you might want to
warn the user if he/she has only a
few trial credits left. To do this, just
test the value of the %LastDP-
CreditsLeft% variable inside your
generic conditional and if it’s less
than, say, 5, redirect the flow of
control to a Message Box element
which warns the punter that it’s
nearly time to reach for the plastic.

At this point, astute readers will
be thinking that this Process Flow
approach has a lot of similarities to
the Wise Installer which likewise
provides little packages of canned
scripting functionality. There are
certainly similarities here, but

➤ Figure 3: This is the default
payment details dialog for
automated payments via
Charge Key. As with all the
other Titanium dialogs, you
can customise it any way you
want. But don't bother jotting
down my credit card details,
this isn't a valid number!



August 2001 The Delphi Magazine 61

overall I prefer the inherently
visual nature of the Process Flow
approach.

But I digress. Testing things out
on a randomly chosen process
viewer application (approximately
100Kb before wrapping), the
resulting EXE increased in size to
around 600Kb. Yes, this is a fairly
hefty overhead, but let’s make the
point that it’s a fixed-size overhead
which bears no relation to the size
of the ‘payload’. In other words,
with the same set of configuration
options, wrapping a 3Mb EXE file
will only result in a 3.6Mb EXE and,
let’s face it, who uses floppy disks
to deploy their applications these
days? BitArts itself makes the
point that Titanium is best suited
to full commercial packages and
not small shareware utilities,
although personally I’d like to
make use of Titanium protection
regardless of the size of my
application!

The End-User’s View
OK, so we’ve now got a wrapped
application. Once the user gets
past the splash screen, he’ll see a
license dialog which will indicate
the state of the license. A Continue
button launches the payload
application while the Purchase
button takes you through to the
Charge Key system, assuming that
this was configured into the wrap-
per. If you didn’t use Charge Key,
then the user must be provided
with a license key which is entered
as a string of hexadecimal digits
into the license dialog. Alterna-
tively (less error prone) you can
supply it as a small .LIC file which
contains the same string of digits. If
the license file approach is being
used , the security checker auto-
matically detects and validates the
file.

From the end-user’s point of
view, the program behaves just like
its ‘unwrapped’ counterpart,
allowing for the slightly longer load
time. The original VERS resource in
the unwrapped EXE file is surfaced
so that, for example, examining a
wrapped executable’s properties
from Windows Explorer will show
your copyright information and
not that of BitArts!

A lot of effort has been put into
the defeating of reverse engineer-
ing techniques. According to
BitArts, the program checks for the
presence of in-memory debuggers
and the like, performing frequent
CRC checks on the internal code to
prevent tampering. For the
ultimate in security, Titanium
incorporates the patent-pending
‘Mutation Engine’, which is
reputed to be the bane of hackers
everywhere. The Mutation Engine
(not to be confused with the virus-
creating technology of the same
name!) works by injecting security
checking code into random places
within the body of your application
code.

According to the BitArts blurb,
the Mutation Engine is capable of
detecting areas of code which are
heavily utilised and automatically
avoids placing security checks in
such code, which would otherwise
cause a performance bottleneck.
Quite how it manages to do this
escapes me: bear in mind that
we’re talking about static analysis
of non-running code, so surely this

would require a profiling session
before the injection process takes
place? But let’s not quibble, the
important thing is that the
software effectively adds numer-
ous security checks within the
body of your wrapped code, which
alone makes the reconstruction of
an unprotected executable into a
huge job.

Another Mutation Engine trick is
to perform automatic encryption
and decryption of security check-
ing code ‘on-the-fly’, thus making it
hard for would-be hackers to track
down and identify all the places
where such code has been
injected. Again, I puzzled over this
one, since the frequent references
to CRC checking in the BitArts liter-
ature would surely mitigate
against self-modifying code as well
as hacker-modified code? Presum-
ably, the on-the-fly decryption/
encryption algorithm used doesn’t
actually disturb the overall CRC
value of a block of encrypted code.
Or maybe the security wrapper
maintains a list of on-the-fly
regions which it specifically

Licensing Options
For the sake of clarity, it’s a good idea to summarise the different types of
licensing options provided by Titanium. The first decision is whether to have a
fixed serial number or a dynamically generated serial number: the latter
being created according to certain (unspecified!) characteristics of the PC on
which the protected software is running.

Ordinarily, you’ll want to use a dynamic serial number, because it’s much
more secure. If you released your software using a fixed serial number, then
there’s a real possibility that someone will release the unlocking code onto
the internet. This will then enable anyone to download the unlock code and
unlock all copies of your software: not a nice scenario. Using dynamic serial
numbers, different machines will require different unlock codes, but there is
one subtle problem here. Suppose you want to place an evaluation version of
your product on your website for end-users to download and try out. The
problem is that you don’t know in advance what will be the resulting dynamic
serial number on each user’s machine, so you can’t supply an evaluation
license as part of the download. Does this mean that each punter has got to
be emailed an evaluation license before they can even try out the product?
Bummer.

Fortunately, BitArts gets around this by providing what they call a Floating
Evaluation license. This gives the user a time-limited or credit-limited evalua-
tion license which isn’t dependent on the dynamic serial number on his spe-
cific PC. However, this serial number is displayed in the license dialog and is
used for registration, either manually or via the Charge Key system. This is the
ideal configuration when making evaluation software available over the
internet. Other options are built into the system, including the ability to limit
the number of concurrently running instances of your software in a
networked environment.



62 The Delphi Magazine Issue 72

ignores during CRC checks? Oh,
my brain is starting to hurt.

Conclusions
Well, as with anything else, the
proof of the pudding is the impor-
tant thing. I’ve trawled the ‘warez’
newsgroups and other nefarious
places, and there’s no mention of
any sort of generic ‘crack’ for Tita-
nium and the Mutation Engine. I’ve
seen a wide variety of software
packages, some of them very
expensive and protected by
sophisticated DLLs, but the crack
required to remove evaluation lim-
itations is often childishly simple
once you find the single point in
the code where the evaluation
state is tested. I don’t believe that
Titanium 2 suffers from such glar-
ing weaknesses and I can whole-
heartedly recommend it to those
who want the ultimate software
protection for their products.

For sure, Titanium 2.0 is an
expensive package in its own right,
but you’ll notice that it has been
used to protect itself. The signifi-
cance of this, naturally, is that

➤ Figure 4: This screenshot,
taken from the BitArts
website, shows the various
defences that are incorporated
into a Titanium-protected
executable, the Mutation
Engine being the most
powerful.

BitArts must be pretty confident
about the level of protection it
gives. Needless to say, I haven’t
found any cracked versions of Tita-
nium lurking on the web. I tried
typing ‘Titanium crack’ into my
fave search engine, and all I got was
details of someone complaining
about fractures in their gold-
plated titanium spectacle frames!

Whether I was writing an expen-
sive, specialised, vertical-market
application, or a small, mass-
market utility like WinZip, I’d want
to have my code protected by
Titanium 2.0. True, there’s that 6%
‘tax’ on every purchase but, like I
said earlier, I reckon this will be
more than compensated for by the
increased sales resulting from the
‘gratification factor’ that end-users
get from being able to instantly
register their chosen product, and

all without having to monkey
around with hardware dongles.
And of course, the increased sales
from people who would otherwise
simply download a ‘warez’ version
of all your hard work.

I should warn you that the
Charge Key Solo option (having
your own Charge Key server) is not
cheap. BitArts has indicated to
me a base price of around $20,000
although the actual figure will
depend on your exact require-
ments, customising the software
to meet your precise needs, and so
on. The company is currently look-
ing at ways to reduce this figure,
possibly through leasing of the
server software, and it is also
considering ways of bringing down
the entry price for small-volume
Titanium customers, perhaps
through rental, or by applying
some sliding scale that’s depend-
ent on your own sales volume. If
you want more details on the cur-
rent state of play, you can contact
the Charge Key sales team on +44
(0)115-9474568.

Titanium 2.0 costs $999 and is
available from BitArts, 18 Friar
Lane, Nottingham, NG1 6DQ, or
email sales@bit-arts.com. The
company website is at www.
bit-arts.com (note that it is not
bitarts.com), where you can get
more info on Titanium and the
company’s other security and
compression products.

Dave Jewell is the Technical Editor
of The Delphi Magazine. You
can contact Dave by email at
TechEditor@itecuk.com


	Titanium 2: Secure Data Delivery
	Go With The Flow!
	The End-User’s View
	Licensing Options
	Conclusions

